文章编号: 0258-7025(2002) 12-1117-05

尘埃粒子的半导体激光散射测量

黄惠杰,赵永凯,任冰强,程兆谷,杜龙龙,路敦武(中国科学院上海光学精密机械研究所,上海 201800)

提要 以半导体激光为光源,建立了一个可以实时测量空气中尘埃粒子的尺寸与颗粒数浓度的光学系统。根据 Mie 散射理论,计算了该光学系统的光散射响应特性。实验结果表明,该系统具有高的计数准确度、计数效率和计 数重复性,适用于洁净度检测和环境空气中尘埃粒子的粒径分布测量。 关键词 光散射,粒子尺寸测量,粒子浓度测量

大键问 儿取别, 粒丁八寸侧里, 粒丁凇及侧里

中图分类号 0 436.2 文献标识码 A

Aerosol Particle Measurement by Laser Diode Light Scattering

HUANG Huir jie, ZHAO Yong-kai, REN Bing-qiang,

CHENG Zhao-gu, DU Long-long, LU Dun-wu

(Shanghai Institute of Optics and Fine Mechanics, The Chinese Academy of Sciences, Shanghai 201800)

Abstract A laser-diode based optical system which can measure aerosol particle size and concentration is described in this paper. The light scattering response characteristics of the system are calculated based on M ie light scattering theory. Some experimental results show that the system has high counting accuracy, efficiency and reproducibility, and suitable for verification of cleanliness class and measurement of ambient aerosol size distribution.

Key words light scattering, particle size measurement, particle concentration measurement

1 引 言

基于尘埃粒子在光束中产生的散射现象为原理 的光学尘埃粒子计数器,因其可实时测量空气中尘 埃粒子的尺寸和颗粒数浓度,所以在洁净环境洁净 度检测、空气悬浮颗粒物监测、气溶胶研究等方面得 到广泛应用^[1-5]。随着激光器的不断发展,光学尘 埃粒子计数器的光源由最初的白炽灯、气体激光器 (主要是 He Ne 激光器),发展到了现在的半导体激 光器。光源的不断更新促进了光学尘埃粒子计数器 性能的不断提高,尤其是半导体激光器的应用,不仅 使光学尘埃粒子计数器的探测灵敏度、计数效率、可 靠性等技术指标得到了大幅度的提高,同时也使其 向着小型化、甚至微型化的方向发展。

本文报道以半导体激光器为光源而建立的激光 尘埃粒子计数器的光学系统,根据 Mie 散射理论计 算了该系统的光散射响应特性,并实测了该系统的 主要技术指标。

2 光学系统

光学尘埃粒子计数器的光学系统主要由照明系统、散射光收集系统和气路系统组成,三者的相交区域为光敏感区。我们设计的光学系统如图1所示,这是一个直角散射光学系统,即照明系统光轴、散射光收集系统光轴和气路系统轴线相交于光敏感区中心且两两垂直。直角散射光学系统因可以很好地阻止来自照明系统的杂光进入散射光收集系统而获得较高的信噪比,所以在光学尘埃粒子计数器中应用较多^{16~81}。

照明系统主要由半导体激光器、准直镜、柱面聚 焦镜和光陷阱组成。半导体激光器发出的激光束经

收稿日期: 2001-09-17; 收到修改稿日期: 2001-12-18

作者简介: 黄惠杰(1966一), 男, 江苏通州人, 研究员, 硕士, 主要从事激光应用工程与仪器研究。E-mail: ldwsiofm@mail. shenc. ac. en

准直镜准直后,被柱面聚焦镜一维聚焦于光敏感区, 焦线位于照明系统光轴和散射光收集系统光轴组成 的平面内,且垂直于气流方向。激光束穿过光敏感 区后进入光陷阱,并被光陷阱吸收掉。散射光收集 系统主要由球面反射镜、聚焦镜、矩形光阑和光电倍

图1 光学系统原理图

1:激光二极管; 2:准直透镜; 3:柱面聚焦镜; 4:探测区; 5:光陷阱;
 6:球面镜; 7:聚焦透镜; 8:矩形光阑; 9:光电倍增管; 10:气溶胶入口; 11:气溶胶出口

Fig. 1 Diagram of the laser-diode based optical system
1: laser diode; 2: collimation lens; 3: cylindrical focusing lens; 4: sensitive volume; 5: light trap; 6: spherical mirror; 7: focusing lens; 8: rectangular field slit; 9: photomultiplier tube; 10: aerosol inlet; 11: aerosol outlet

表1 光学系统主要技术参数

Table 1 Parameters of the optical system

Light source	10 mW laser diode at 650 nm
Cylindrical focusing lens	f' = 70 mm, DOF = 1.6 mm
Collecting aperture half angle β	44°
Inclining angle between illumination and collecting axes ϕ	90°
Scattering angle θ	46°~ 134°
Curvature radius of spherical mirrors	20 mm
Sensitive volume	1.6 mm × 1.6 mm × 0.023 mm

增管组成。球面反射镜作为收集散射光的主接收 镜,其焦点与光敏感区中心重合。矩形光阑可以滤 除光敏感区外的杂光。被测尘埃粒子流过光敏感区 时产生与其尺寸成比例的散射光,一定立体角范围 内的散射光被球面反射镜反射后变成平行光,经聚 焦镜聚焦于矩形光阑处,穿过矩形光阑后进入光电 倍增管,光电倍增管输出一个幅度与粒子尺寸成比 例的脉冲信号,经后续电路放大、甄别、计数后得到 被测空气中各种粒径尘埃粒子的颗粒数浓度。为了 保证采样气流中的所有粒子通过光敏感区而不被漏 测,进气嘴出口的直径应小于光敏感区激光焦线长 度,且在采样气流外加上了环形洁净气套。表1给 出本光学系统的主要技术参数。

3 计算结果

一般情况下,光学尘埃粒子计数器的光学系统 对于直径为 *d* 的单个均匀球形粒子的散射光通量 正比于下式^[9,10]

$$R(m, \alpha) = \iiint \lambda^2 / 8 \pi^2 \left[i_1(\alpha, m, \theta) + i_2(\alpha, m, \theta) \right] E(\lambda) S(\lambda) F(\theta, \phi) d\lambda d\theta d\phi$$

(1)

式中, *m* 为粒子的复折射率, 虚部表示粒子对入射 光有吸收; $\alpha = \pi l/\lambda$, 为粒子的尺寸参数; θ 为散射 角, 是散射光线相对于照明光线的夹角; $i_1(\alpha, m, \theta)$ 和 $i_2(\alpha, m, \theta)$ 是 θ 角方向上的 Mie 散射强度函 数, 分别表示平行于和垂直于照明系统光轴和散射 光收集系统组成的平面的两个偏转分量; $E(\lambda)$ 和 $S(\lambda)$ 分别为光源的光谱强度和光电探测器的光谱 灵敏度; $F(\theta, \phi)$ 是光学系统的几何结构因子, 与照 明系统和散射光收集系统光轴的夹角, 对于照明系 统光轴与散射光收集系统光轴的夹角, 对于照明系 统光轴与散射光收集系统光轴的夹角, 对于照明系 统光轴与散射光收集系统光轴的夹角, 对于照明系 统光轴与散射光收集系统光轴的表角, 对于照明系 统光轴与散射光收集系统光轴内表 ϕ 的侧向式散 射光收集系统, $F(\theta, \phi) = 4 \sin \phi \sin \theta \cos^{-1}[(\cos \beta - \cos \theta \cos \phi)/\sin \phi \sin \theta]$, $\gamma \pi \beta$ 分别为照明系统与散射光收集系统的孔径半 角, 参见图 1。

本文描述的光学系统的照明光束以柱面镜一维 聚焦,且孔径半角只要1.6°,可认为这是一个在单色 平面波照明下的直角散射光学系统(\@= 90°)。因此 式(1)可以简化为

$$R(m, \alpha) = (\lambda^2 / 8\pi^2) \int [i_1(\alpha, m, \theta) + i_2(\alpha, m, \theta)] F(\theta, \phi) d\theta \qquad (2)$$

其中

 $F(\theta, \phi) = 2\sin\theta \cos^{-1}[(\cos \beta - \cos \theta \cos \phi) / \sin \theta \sin \phi] .$ $i_1(\alpha, m, \theta)$ 和 $i_2(\alpha, m, \theta)$ 是复杂的 Legendre 多项 式和 Bessel 函数的无穷级数,在计算中采用文献 [10]的子程序,其中假设级数展开式是均匀收敛的, 这样只要计算到级数展开式的第 N_c 项后,计算引 起的误差足够小,而 N_c 为与(α + $4\alpha^{1/3}$ + 2)最接近 的整数。我们计算了上述光学系统对于几种材料的 球形粒子的散射光通量与粒径的关系曲线,如图 2 所示。选用的 5 种材料通常被用于光学尘埃粒子计 数器的标定或在实际测量中常常遇到,它们分别是: 聚苯乙烯(polystyrene latex, PSL,复折射率 m =1.585 – 0*i*),二甲酸(droctyl phthalate, DOP, m =1.49 – 0*i*),碳(carbon, m = 1.95 – 0.66*i*),煤 (coal, m = 1.53 – 0.5*i*), 水(water, m = 1.33 – 0*i*)。

of some refractive indices

从图 2 曲线可知: 1) 光学系统的光散射特性强 烈地依赖于粒子材料。对于非吸收型的透明粒子, 在 *d* < 1.1 μm 区域散射光通量随着粒径的增大而 单调上升,而当 *d* > 1.1 μm 后,散射光通量与粒径 的关系曲线存在振荡性,这表明本光学系统对小粒 子的探测分辨率较高,而对大粒子的探测分辨率低; 对于吸收型粒子,曲线光滑,在所计算的 0.1~10 μm 粒径范围内散射光通量随着粒径的增大而单调 上升,这表明在探测吸收型粒子时在所关心的粒径 范围内均可获得较非吸收型粒子时在所关心的粒径 范围内均可获得较非吸收型粒子高的分辨率。2) 小粒子区域 (*d* < 0.6 μm)的曲线斜率,这也表明在探测小 粒子时可以获得较大粒子高的分辨率。3)不同材 料的相同粒径的粒子的散射光通量不相等。在 *d* < 0.3 µm 区域,吸收型粒子的散射光通量大于相同 粒径的非吸收型粒子的散射光通量;在 0.3~0.6 µm 之间是一个过渡区域;在 d > 0.6 µm 区域,吸 收型粒子的散射光通量反而小于相同粒径的非吸收 型粒子的散射光通量,而且散射光通量的差别比小 粒径区域大。4)在未知被测粒子材料和形状的情 况下,所测得的粒子尺寸不能认为是被测粒子的实 际尺寸,而应该是光学等效粒径,即当被测粒子产生 的散射光与光学尘埃粒子计数器标定时所用的某种 材料的某一粒径的球形粒子相同,则认为被测粒子 具有与该球形粒子在光学上等效的粒径。一般情况 下,光学尘埃粒子计数器采用聚苯乙烯球形粒子标 定,所以由其测得的粒径实际上是聚苯乙烯球形粒子标 之的光学等效粒径。这个概念在洁净环境洁净度监 测中普遍采用^[11]。

4 实验结果与讨论

根据计算结果及实际测量所需,将上述光学系 统设定为6个粒径通道:0.3,0.5,0.7,1.0,2.0,5.0 µm,空气采样流量为2.83 L/min(0.1 ft³/min)。对 粒径分别为0.532,0.72,1.53 µm 的3种单分散 PSL 球形粒子进行测量。测量时,含有 PSL 球形粒 子的悬浊液经美国 PMS 公司 PG-100型粒子发生 器雾化、干燥后,由进气口吸入,穿过光敏感区后,从 出气口排出。连续测量10次,每次测量时间1 min, 取10次平均值。测量结果见表2。

4.1 计数准确度与计数效率

计数准确度定义为落在相邻粒径通道区间内的 粒子数在总粒子数中所占的比例,计数效率定义为 测量到的粒子数与实际进入仪器的粒子数之比值。 在实际测量中,计数效率通常以大于和等于相应粒 径通道的粒子数在总粒子数中所占的比例来表 示^[1]。由计算结果可知,对于 PSL 球形粒子,由于 0.3 μm 粒子散射光通量分别是 0.5 μm,0.7 μm, 1.5 μm 粒子散射光通量分别是 0.5 μm,0.7 μm, 1.5 μm 粒子散射光通量分别是 0.5 μm,0.7 μm, 2.5 μm 粒子散射光通量分别是 0.5 μm,0.7 μm,

表 2 结果令人满意,因为绝大部分粒子被相应的粒径通道测量到。3 种粒子的计数准确度分别为77.5%,68.2%和61.6%,计数效率分别为91.2%,68.9%和62.4%。不同粒径粒子的计数准确度和计数效率存在着一定的差异,主要原因是:1)实际的各粒径通道的甄别电位与理论计算不完全相同,

应根据实际测量结果作适当的调整。从实测结果 看,0.5 µm 和 0.7 µm 粒径通道的甄别电位需适当 降低;2) 在粒径通道设置上,大粒子区域的通道间 隔要大于小粒子区域。因为从计算结果知,大粒子 区域的光散射响应曲线的斜率小于小粒子区域,大 粒子区域的粒径分辨率较低;3) 与所用的 PSL 球形 粒子的尺寸均匀性有关,上述测量结果也表明小粒 子的尺寸均匀性优于大粒子。从洁净环境洁净度监 测角度来看,计数效率更有意义,因为洁净度级别指 单位体积空气中所含的大于和等于所指定粒径(通 常是 0.5 µm) 的尘埃粒子数^[11]。

4.2 计数重复性

计数重复性定义为计数准确度的相对标准偏差^[12]。对 0.532 μm 聚苯乙烯球形粒子连续测量 10 次,每次测量时间为 1 min,总粒子数(≥0.3 μm 的粒子数) 和在 0.5~0.7 μm 之间的粒子数列于表 3。 计算得计数准确度的平均值为 0.775,标准偏差为 0.011,相对标准偏差为 1.4%,优于文献[12]所规定的 20% 的技术要求。

表 2	3 种聚苯乙烯球形粒子测量结果(粒子数/mir	1)
Table 2	Measured results of PSL particles (particles/n	nin

PSL	Size channel/µm							
diameter/µm	≥0.3	0.3~ 0.5	0.5~ 0.7	0.7~ 1.0	1.0~ 2.0	2.0~ 5.0	> 5.0	
0.532	11266	992	8734	1362	134	44	0	10274(≥0.5 µm)
0.72	7580	766	1592	5167	39	16	0	5222(≥0.7 µm)
1.53	3870	367	370	720	2385	28	0	2413(≥1.0 µm)

表 3 0.532 µm 聚苯乙烯球形粒子连续测量 10 次结果(粒子数/min)

Table 3 Ten successive measurement results of 0. 532 μm PSL particle (particles/min)

Size channel	Sample period No.									
$/\mu_{m}$	1	2	3	4	5	6	7	8	9	10
≥0.3	11059	10995	11107	10980	10958	11417	11200	11469	11358	12093
0.5~ 0.7	8341	8363	8516	8595	8620	8955	8686	8979	8908	9377
Counting accuracy	0. 754	0. 761	0. 767	0. 783	0. 787	0. 784	0. 776	0.783	0. 784	0. 775

4.3 环境空气中尘埃粒子的粒径分布测量

用本光学系统测量实验室环境空气中的尘埃粒 子浓度与粒径的关系。连续测量 10 次,每次测量时 间为 1 min,取 10 次平均值。将所得结果换算成每 升空气中所含的大于和等于某一粒径档的粒子数, 见表 4。

表	4	圿 境空	气中尘埃	吴粒子汉	く度ル	则量值
Table 4	М	horuped	ambient	aarosol	sizo	distribution

_	10010 1 110000010	
_	Size channel/µm	Measured concentration/particles/liter
	≥0.3	117141
	≥0.5	71545
	≥0. 7	45223
	≥1.0	11083
	≥2.0	3225
	≥5.0	295

大量研究表明,空气中的尘埃粒子按粒径的粒子数累积分布在双对数坐标图上近似为直线关系^[13]

$$N_{d1}/N_{d2} = (d_1/d_2)^{-n}$$
(3)

式中 N_{d1} 为粒径 $\geq d_1$ 的粒子总数(粒子数/L), N_{d2} 为粒径 $\geq d_2$ 的粒子总数(粒子数/L),n为分布指

数。分布指数 n 一般在 2.0~ 2.3 变化。根据式(3), 利用最小二乘法将实测值进行拟合, 计算得 n = 2.21。实测曲线与拟合曲线见图 3。由图可见, 实测 曲线非常接近于拟合所得直线, 这表明利用本光学 系统测得的粒径分布结果能够很好地反映环境空气 中尘埃粒子的实际粒径分布。

5 结 论

 1)建立了一套以半导体激光器为光源的用于 实时测量空气中尘埃粒子的尺寸与颗粒数浓度的光 学系统,计算了几种材料的球形粒子的散射光通量 与粒径的关系曲线。计算表明在利用光散射法测量 尘埃粒子时引入光学等效粒径的必要性。

 2) 对聚苯乙烯球形粒子的测量结果表明,该光 学系统具有很高的计数准确度、计数效率和计数重 复性。如对甄别电位作适当调整,将可获得更好的 结果。

3) 对环境空气中尘埃粒子粒径分布的测量表明,本光学系统不仅可以用于低粒子浓度洁净环境的洁净度测量,而且可以用于研究环境空气中尘埃粒子的粒径分布情况。

参考文献

- J. Gebhart, P. Blankenberg, C. Roth. Counting efficiency and sizing characteristics of optical particle counters [C]. B. Y. H. Liu, D. Y. H. Pui, H. J. Fissan. Aerosols. New York: Elsevier, 1984. 7~ 10
- 2 W. C. Hinds, G. Kraske. Performance of PMS Model LAS-X optical particle counter [J]. J. Aerosol Sci.,

1986, **17**(1):67~72

- 3 R. G. Knollenberg. The measurement of latex particle sizes using scattering ratios in the Rayleigh scattering size range [J]. J. Aerosol Sci., 1989, 20(3):331~345
- 4 D. Bemer, J. F. Fabries, A. Renoux. Calculation of the theoretical response of an optical particle counter and its practical usefulness [J]. J. Aerosol Sci., 1990, 21(5): 689~700
- 5 S. English. Detecting contamination in the semiconductor processing is key for particle counters [J]. Cleanrooms, 1996, 10(11): 25~ 32
- 6 Huijie Huang, Dunwu Lu, Lixin Zou et al. A highefficiency optical sensor for optical particle counters [C]. SPIE, 1999, 3898: 382~ 387
- A. Lieberman. Royco instruments particle counters: capabilities and limitations [C]. D. A. Lundgren, F. S. Harris, W. H. Marlow *et al.*. Aerosol Measurement, Gainesville: University Press of Florida, 1979. 183~193
- 8 B. Y. H. Liu, R. N. Berglund, J. K. Agarwal. Experimental studies of optical particle counters [J]. Atmospheric Environment, 1974, 8:717~732
- 9 J. R. Hodkinson, J. R. Greenfield. Response calculations for light scattering aerosol counters and photometers [J]. *Appl. Opt.*, 1965, 4(11):1463~1474
- 10 C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles [M]. New York: John Wiley & Sons, 1983, Chapter 4. 82 ~ 129; Appendix A, 477~ 482
- US Federal Standard, FED-STD-209E, Airborne particulate cleanliness classes in cleanrooms and clean zones [S]. September 11, 1992
- 12 Verification regulation of dust particle counter [S]. JJG547-88, 1988 (in Chinese)
- 13 Xu Zhonglin. Principles of Air Purifying Technology
 [M]. Shanghai: Press of Tongji University, 1998. 61~
 69 (in Chinese)